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Abstract A detailed spectral map for the fast-time instability in Liñán’s diffusion-
flame regime is presented in order to clarify the origin of two bifurcations of co-
dimension 2, causing the transitions from cellular to uniform-oscillatory instability
and from uniform-oscillatory to traveling instability. The role of the real and contin-
uous essential spectrum is found to be pivotal in understanding both transitions. Par-
ticular attention is paid to the spectral characteristics in the stable parametric regions,
where the interaction with the essential spectrum leads to these transitions. When the
Lewis number is increased above unity from below, the discrete real spectrum disap-
pears by submerging below the essential spectrum, and the discrete complex spectrum
emerges instead, eventually leading to uniform-oscillatory instability. The transition
from uniform-oscillatory to traveling instability, associated with the Bogdanov–Takens
bifurcation, involves a phenomenon called gap spectrum. For Lewis numbers slightly
greater than unity and Damköhler numbers sufficiently large, the discrete complex
spectrum intersects the plane corresponding to the essential spectrum, resulting in a
gap in the discrete spectrum for small wave numbers. The discrete complex gap spec-
trum exhibits a local maximum as the parameter values are modified to approach the
Hopf bifurcation boundary. The gap in the discrete complex spectrum disappears and
traveling instability emerges when crossing the Hopf bifurcation boundary.
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1 Introduction

The fast time instability is a particular class of intrinsic flame instabilities with the
length and time scales of the inner reactive–diffusive layer rather than the conven-
tional flame scales based on the outer convective–diffusive layer. In the context of
activation-energy asymptotics (AEA) [1], where the Zel’dovich number β, a ratio of
the activation energy to the thermal energy, serves as the large expansion parameter,
the inner reactive–diffusive layer is thinner than the outer convective–diffusive layer
by an order of magnitude in the Zel’dovich number, and the corresponding time scale
is two-orders-of-magnitude shorter. Since perturbations involve much shorter wave-
lengths, the corresponding growth or decay is much faster and so arrives the name,
fast-time instability.

The fast-time instability, excluding the transport processes pertinent to the
convective–diffusive layer, becomes a purely reactive–diffusive problem. Conse-
quently the fast-time instability is the most succinct flame-instability formulation and
its results should be universally applicable to reactive–diffusive instabilities occur-
ring in laminar flames. Since the modification of the instability spectrum, associated
with the convective transport, is needed only for small wave numbers of O(β−1), the
results for fast-time instability can be regarded as the baseline characteristics for flame
instability.

Although it has been long since the first analysis of fast-time instability by Peters [2],
the papers, concerning the spectral nature of the fast-time instability, are rather limited
to those by Kim et al. [3–5] on diffusional–thermal instability of diffusion flames. In
particular, the recent papers by Gubernov and Kim [4,5], carried out for L < 1 and
L > 1, respectively, mapped the parametric regions exhibiting distinct instability
spectra by systematically examining the dispersion relations in the parametric space
of L andΔ′ where L is the common Lewis number for fuel and oxidizer andΔ′ denotes
the logarithmic derivative of the reduced Damköhler number Δ with respect to the
inner reactant leakage, as a measure for the degree of chemical non-equilibrium.

The first paper by Kim and Gubernov [4] was devoted to the cellular instability
occurring for L < 1. The unstable spectra were found forΔ′ > 0. The case ofΔ′ = 0
is obviously the minimumΔ condition, indeed corresponding to the static extinction for
flames with L = 1. However, for flames with L < 1, extinction is shifted to a positive
value ofΔ′, due to the excess-enthalpy phenomenon arising from the condition of the
chemical energy influx being greater than the thermal energy outflux. Consequently,
there is a window of opportunity for cellular instability to occur even after crossing
the condition of Δ′ = 0.

The analysis in [5], carried out for L > 1, reveals a more complex instability
map. First of all, the nature of instability is oscillatory, as manifested by the complex
eigenvalues, but the detailed nature differs depending on the Lewis number L . For
Lewis numbers greater than unity but yet smaller than a critical value Lc, the instability
is found to be uniform and oscillatory, and its onset occurs through the saddle-node
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bifurcation immediately after crossing the instability boundary. However, for Lewis
numbers greater than the critical value Lc, the corresponding instability is found to
occur in a multi-stage manner. Traveling instability occurs first upon crossing the Hopf
bifurcation boundary, and further increase of Δ′ brings in a series transition leading
to uniform-oscillatory instability via traveling instability that is observable only in a
narrow parametric region of Δ′. In particular, the critical condition at L = Lc and
Δ′ = Δ′

c, that is responsible for the transition from the uniform-oscillatory instability
to traveling instability, is identified as the Bogdanov–Takens bifurcation.

As a whole, the fast-time instability exhibits three different routes to enter the
unstable regions, namely cellular, uniform-oscillatory and traveling instabilities. The
switching between these instability types is due to the bifurcations of co-dimension 2 at
L = 1, Δ′ = 0 and at L = Lc, Δ

′ = Δ′
c. The first bifurcation is commonly observed

in many flame instability situations, and is relatively well understood. However, the
detailed procedures for the latter bifurcation are yet to be fully understood although the
qualitative differences in the dispersion relations in the regions around the Bogdanov–
Takens bifurcation condition are partially known. Particularly, we are more concerned
with the qualitative differences in stable dispersion relations. The Previous work by
Gubernov and Kim [5] exhibited that crossing the line of L = Lc from below makes
two distinct changes in stable dispersion relations, namely Re(S) �= 0 at K = 0
and non-monotonic variation of Re(S) with K , whereas stable dispersion relations
below L = Lc are firmly anchored at Re(S) = 0 and K = 0 and Re(S) decrease
monotonically. Such qualitative transformations of the dispersion relation in the stable
region would be linked to the origin of Bogdanov–Takens bifurcation. It is therefore
our purpose of this research to investigate the spectral characteristics of the eigenvalues
in the stable regions to understand the detailed procedure for the Bogdanov–Takens
bifurcation to emerge.

2 Conservation equations

The detailed derivation steps for the conservation equations are not presented here and
the final equations for the mean field as well as unsteady field will be written here
directly. The readers would be referred to the previous paper by Kim, Williams and
Ronney [3] for the detailed derivation.

2.1 The structure equation for the mean field

The mean-field inner structure is described by the famous Liñán’s canonical equation
for the diffusion-flame regime written below [1]

d2Θ

dξ2 = Δ(Θ − ξ)(Θ + ξ) exp{−(Θ + γ ξ)},
Θξ → ±1 as ξ → ±∞

(1)

whereΘ is the inner variable for the temperature profile and ξ is the inner coordinate.
The fuel and oxidizer concentrations are given through the coupling relationships as
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ΘF = Θ − ξ, ΘO = Θ + ξ. (2)

The factor γ measures the degree of asymmetry in the thermal diffusion across the
reaction zone and all the numerical results presented in this paper are obtained for
γ = 0, that can be one of the most representative cases for the diffusion-flame regime.
In addition, Δ is the reduced Damköhler number and will be just called Damköhler
number for notational brevity unless specifically mentioned otherwise. The mean-field
problem in Eq. (1) is posed as that of finding the Θ profile as a function of Δ.

The overall characteristics of the mean-field solution could be better represented
by the C-shaped curve of Δ(α) where the reactant leakage α is defined to be α =
ΘF (ξ → ∞) ≡ (Θ − ξ)(ξ → ∞). The C-shaped curve possesses a minimum value
ofΔ, denoted byΔm , below which solutions to Eq. (1) do not exist. The condition of
minimum Δ is a saddle-node bifurcation point (or otherwise called turning point), in
the vicinity of which interesting dynamic behaviors are anticipated to arise.

Since the instability characteristics is directly linked to the state of reaction, we
employ the logarithmic derivative of Δ with respect to α,

Δ′ ≡ d lnΔ

dα
(3)

as the reaction-state variable, mainly because of its particular properties. In the Burke–
Schumann limit corresponding to Δ → ∞, Δ′ → −∞. With increasing α, Δ′ keeps
monotonically increasing whilst Δ′ = 0 at the turning point, thereby the sign of Δ′
serving as a convenient indicator of whether the reaction state passes the turning point
or not. The value of Δ′ can be directly computed with a better accuracy from the
eigenvalue problem for Δ′, that can be derived by simply taking partial derivative of
Eq. (1) with respect to α. The behavior of the eigenvalue Δ′ can be found in [3,6].

2.2 The conservation equations for the linear instability analysis

In order to examine the stability of the inner reactive–diffusive structure, its time
dependent response on perturbations, imposed on the mean-field solution, is con-
sidered. With the simplification of the Lewis numbers identical for the both fuel and
oxidizer, the differential equations describing the time-dependent behavior of an infin-
itesimally small normal-mode perturbation are written as

d2ψ

dξ2 −(S + K 2) ψ = d2χ

dξ2 −(L S + K 2) χ = Δe−(Θ+γ ξ)[2Θχ−(Θ2 −ξ2)ψ ] (4)

where ψ and χ are the eigenfunctions for the inner-zone temperature and fuel (or
oxidizer) variables, respectively, S is the growth rate and K is the wave number. The
differential equations in Eq. (4) are subject to the boundary conditions ψ → 0 and
χ → 0 as ξ → ±∞, from matching with the outer region, where the perturbations
are found to be vanishing at the leading order. This matching condition arises from
the vanishing perturbations outside of the inner layer since the perturbations are too
fast and too short for them to survive in the outer layer.
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Even if the vanishing perturbation is a correct matching condition, it is often imprac-
tical to impose the strong boundary condition, because it requires too big a calculation
domain for the eigensolution to converge to the imposed boundary condition. There-
fore, we rather employ a weaker boundary condition given as

dψ

dξ
→ ∓

√
S + K 2 ψ,

dχ

dξ
→ ∓

√
L S + K 2 χ, as ξ → ±∞ (5)

representing the exponential decay toward the boundary region.
The stability problem is posed as that of finding the growth rate S as a function of

the wave number K for the specified values of L and Δ′. The key tool that is used
for the numerical investigation of stability of diffusion flames is the Evans function
method [7]. Previously the Evans function approach was employed to study the onset
of pulsating instabilities in premixed flames with Lewis number L > 1 for both the
adiabatic [8] and nonadiabatic flames [9,10]. In our earlier studies [4,5], we also
extended the applicability of the method to investigate the instabilities of a different
nature, namely cellular and oscillatory instabilities in diffusion flames, which are
dominant for L < 1 and L > 1, respectively.

2.3 Essential spectrum

For L = 1, Eq. (4) gives χ = ψ , and a classical eigenvalue problem, similar to that
of Schroedinger type, is obtained,

d2ψ

dξ2 + (E − V ) ψ = 0, ψ(±∞) = 0. (6)

with “energy” E = −(S + K 2) and “potential” V (ξ) = Δ(2Θ − Θ2 +
ξ2)e−(Θ+γ ξ) [11]. Since V → 0 as ξ → ±∞, it is known that there is a contin-
uum of eigenvalues E for E ≥ 0 and while a discrete number of eigenvalues may
exist for E < 0 [11,12]. Seen from the nature of Eq. (6) similar to that of the wave
equation, Eq. (6) will exhibit an oscillatory behavior in the region where (E −V ) > 0.
Particularly if (E − V ) > 0 toward the infinitely extended boundaries, a continuous
spectrum of eigenfunctions, which gradually decay to the ξ -axis while oscillating
across the axis, are permitted. Consequently, S < −K 2 becomes the essential spec-
trum for Eq. (6).

Although V (ξ) > 0 if |ξ | is sufficiently large, the solution to Eq. (1) has a range of
ξ over which V (ξ) < 0, for the branch of solutions Θ(ξ) that has the greater amount
of leakage. Consequently, negative but yet discrete eigenvalues E can be found for
Δ′ > 0 and these negative values of E correspond to instability (S > 0) at sufficiently
small values of K . Interest centers on the least stable solutions, that is, on the largest
negative eigenvalues E , and the eigenfunctions ψ for these lowest energies have no
zeros for finite values of ξ . For these solutions, S = −E − K 2 is maximum for K = 0
and negative for K >

√−E . Buckmaster, Nachman and Taliafero [13] addressed this
problem for K = 0 and concluded that the lower branch of the C-shaped curve, in
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which Δ′ < 0, is stable, with instability setting in at the turning point, Δ′ = 0. The
same conclusion clearly applies even if transverse diffusion (K �= 0) is permitted. The
negative slope of the straight line of S as a function of K 2 demonstrates the stabilizing
influence of transverse diffusion in the reaction zone. In contrast to the results for L < 1
with convective–diffusive scaling, stability now always is encountered at sufficiently
large K .

For L �= 1, the coupling relationship ψ = χ is no longer valid, and the eigenvalue
problem in Eq. (4) takes a somewhat different form,

{Dξξ + (E − V)}(ψ, χ) = 0, (ψ, χ)(±∞) = 0, (7)

where the energy matrix E and potential matrix V are given as

E =
[−(S + K 2) 0

0 −(L S + K 2)

]
V = Δe−(Θ+γ ξ)

[−(Θ2 − ξ2) 2Θ
−(Θ2 − ξ2) 2Θ

]
. (8)

In the above equation for the potential matrix V, we can immediately note that V
is no longer self-adjoint, thereby permitting complex eigenvalues, which are in fact
found for L > 1. Although the eigenvalue problem in Eqs. (7) and (8) does not fall
into the classical Schroedinger equation, its eigenvalues and eigenfunctions have to
follow the similar mathematical behaviors subject to the eigen-pair to Eq. (6). Since
the potential V exponentially decays to “0” as ξ → ±∞, Eψ = −(S + K 2) > 0
and Eχ = −(L S + K 2) > 0 corresponds to the essential eigenvalue spectrum for
ψ and χ , respectively. Once a continuous spectrum appears in either space of Eψ
or Eχ , the continuous spectrum should be permitted. The continuous spectrum S <
−K 2/max(L , 1) is the region where the essential eigenvalue spectrum for Eq. (4) lies.

Although the above arguments do not possess mathematical rigor and rather appeal
to physical intuition it can be shown that they are indeed correct. We rewrite the Eqs. (7)
and (8) in a form of a system of differential equations of the first order as

uξ = A(ξ, λ)u, A(ξ, λ) =
[

0 I
−(E(λ)− V(ξ)) 0

]
(9)

where u = [(ψ, χ), (ψ, χ)ξ ]T and I is a 2 × 2 identity matrix. It is known that the
properties of the eigenvalue problem (7) and (8) are closely related to the spectral
characteristics of the limit matrix A(λ) = limξ±∞ A(ξ, λ). According to [14], para-
meter S belongs to the essential spectrum if A(λ) is not hyperbolic. It can be easily
demonstrated that the latter condition is satisfied if S is real and either S + K 2 < 0
or L S + K 2 < 0. Therefore we again conclude that the essential spectrum is con-
tained in the region of all real S satisfying the condition S < −K 2/max(L , 1). For
further analysis, it is convenient to imagine the essential spectrum in three dimen-
sional space of (ReS, I mS, K ) as a half plane I mS = 0 located below the line
ReS = −K 2/max(L , 1).
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3 Spectral characteristics in the stable regions

In this section, our attention will be focused mainly on the spectral characteristics in the
stable regions, particularly in order to illuminate the origin of the Bogdanov–Takens
bifurcation. The numerical calculations are carried out along the four parametric tra-
jectories, marked in Fig. 1, in which the subplots exhibit typical behaviors of the
primary discrete spectra for distinct L − Δ′ parametric regions. In the subplots, the
solid lines represent the real discrete spectrum while the dashed lines represent the
complex discrete spectrum.

Prior to examine the spectral characteristics, it is quite useful to summarize the
previous results as a baseline information to the present study. In Fig. 1, the stable
region for L < 1 is found to be located in the region of Δ′ < 0 with the instability
boundary plotted by the thick solid line. The transition occurs through the emergence
of positive real eigenvalues in a range of small wave numbers, thereby giving rise to a
cellular instability. For L > 1, the boundary between the stable and unstable regions
is marked by a thick solid line and a thick dashed line, each corresponding to the
saddle-node bifurcation associated with uniform-oscillatory instability and the Hopf
bifurcation associated with traveling instability, respectively. These three boundary
segments separating the unstable region from the stable region correspond to bifur-
cation of co-dimension 1. On the other hand, the two transition points between three
boundary segments, occurring at L = 1, Δ′ = 0 and L = Lc, Δ′ = Δ′

c, corre-
spond to bifurcation of co-dimension 2. In particular, the second transition, marked by
the asterisk sign in Fig. 1, is known as the Bogdanov–Takens bifurcation, associated
with the transition from the saddle node bifurcation to the Hopf bifurcation. For more
detailed description of Fig. 1, we refer the readers to the previous works carried out
by the authors [4,5]. The parametric trajectories, along which the numerical calcu-
lations are carried out, are specifically chosen to investigate variation of the spectral
characteristics around the bifurcations of co-dimension 2.

First we examine the spectral characteristics along the line ‘1’ for which the Lewis
number L is fixed at 0.8 while Δ′ is gradually increased from −0.6 to 0.0 at which
the cellular instability is allowed to emerge. The spectral variation along the line ‘1’
is depicted in Fig. 2, where the shaded region corresponds to the essential spectrum
S < −K 2/max(L , 1) = −K 2. The primary spectrum for L < 1 is always real
and is found to lie above the essential spectrum. The essential spectrum and primary
spectrum converge to each other only at the origin S = K = 0. As known from
the previous analysis [3,4], as long as Δ′ ≤ 0, the growth rate S increases gradually
with increasing Δ′ although remaining negative for all wave numbers. In Fig. 2, the
curve 5, corresponding to Δ′ = 0, possesses the property of S = 0 and d S/d K 2 = 0
at K = 0, the condition stating the onset condition of instability. Once Δ′ becomes
positive, the growth rate S is permitted to take a positive value for a finite range of
small wave numbers, which is not shown in Fig. 2. Qualitative variation of the spectral
characteristics for L = 0.8 beyond Δ′ > 0 can be seen from Fig. 1. Initially crossing
through the line ofΔ′ = 0, the growth rate S(K = 0) remains to be 0 while possessing
a positive value for d S/d K at K = 0. However, further increase ofΔ′ beyond a critical
value atΔ′ = 1 − L causes even planar waves to become unstable as seen from Fig. 1
that S(K = 0) is no longer attached at the origin S = K = 0.

123



J Math Chem (2015) 53:220–235 227

Fig. 1 Stability diagram based on the previous studies [4,5] and the trajectories along which the spectral
characteristics will be examined

Now we examine variation of the spectral characteristics with L along the trajectory
‘2’ in Fig. 1. Since the trajectory ‘2’ spans the Lewis number L from 0.6 to 1.4 while
Δ′ is fixed at -0.1, the trajectory is divided into two parts, namely, the trajectories ‘2a’
and ‘2b’, each corresponding to L ≤ 1 and L ≥ 1, respectively. The characteristics of
spectral variation along the trajectory ‘2a’ is shown in Fig. 3, in which the essential
spectrum again corresponds to S < −K 2 as Fig. 2 and is shaded. SinceΔ′ is negative,
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Fig. 2 The real dispersion relations S(K 2) for L = 0.8 and various values of Δ′

Fig. 3 The real dispersion relations S(K 2) for Δ′ = −0.1 and various values of L ≤ 1

i.e. before reaching the instability onset condition and L ≤ 1, the growth rate is real
negative for all wave number. However, with the Lewis number L increasing toward
unity, the growth rate S is decreasing for all wave numbers while still anchored at
S = K = 0. At L = 1, the primary spectrum becomes S + K 2 = 0, which finally
collapse with the essential spectrum, indicating that a completely different spectral
nature will emerge as the Lewis number L goes above L = 1.

As the Lewis number L becomes greater than unity, the spectral characteristics are
examined for the trajectory ‘2b’, along which a great change occurs for the essential
spectrum. Since the essential spectrum is S < −K 2/max(L , 1), the region for the
essential spectrum expands with L increasing above unity. In order to describe the
spectral characteristics in association with the essential spectrum, the vertical axis is
now modified from S to L S. Therefore, it is possible to fix the upper boundary of the
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Fig. 4 Real and imaginary parts of the dispersion relations L S(K 2) for Δ′ = −0.1 and various values
of L

essential spectrum while maintaining the qualitative nature of dispersion relations. As
the Lewis number L moves just above L = 1, the primary spectrum disappears from
the region above the essential spectrum and discrete spectra with a different nature
appears. The curve 1 in Fig. 4, corresponding to L = 1.1, exhibits the discrete spectrum
with the largest Re(S). It has to be noted that the largest eigenvalue is found in the
upper boundary of the essential spectrum and that the discrete spectrum is complex as
seen from the imaginary part depicted in the lower plot of Fig. 4 and is allowed to be
separated from the essential spectrum even if Re(S) falls below L S < −K 2. As the
Lewis number is further increased to L = 1.2, but yet before crossing the instability
onset boundary, the real part of the discrete spectrum tends to move upward in Re(L S)
shown in the curve 2 of the upper plot of Fig. 4 as well as Re(S) not shown in the
figure. The imaginary part is much greater for L = 1.2 than that of L = 1.1, indicating
that the oscillatory nature is strengthened.
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Just below L = 1.3, the trajectory ‘2b’ now crosses the instability onset boundary,
marked by the thick solid line. The curve 3 corresponds to the primary spectrum for
L = 1.3, which is composed of the real and complex branches. For sufficiently small
wave numbers, there exists a real branch, which is no longer single-valued. At K = 0,
the primary real eigenvalue is positive, meaning that instability has emerged, while
the secondary real eigenvalue is anchored at the origin. As the wave number increases,
the primary and secondary real eigenvalues approach each other and eventually form a
half loop. A double real eigenvalue exists at the rightmost turning point of the half loop
and a pair of complex conjugate eigenvalues bifurcate from the turning point as seen
from the curve 3 of Fig. 4. The complex conjugate pair varies in a monotonic manner
in that the real part Re(L S) decreases monotonically whereas the imaginary part
I m(L S) increases monotonically. The real part of the primary complex eigenvalue
may fall below the upper boundary of the essential spectrum, but it never crosses
the essential spectrum because the primary branch lies in the complex domain. The
curve 4 corresponds to the case of L = 1.4, and its qualitative nature is identical
to that of curve 3 except that the growth rate Re(S) is greater for L = 1.4. It is
worthwhile to note that the imaginary parts look different depending on how the
complex eigensolution bifurcates. When the complex eigensolution comes out from
the real turning point, as seen from the case of L = 1.3, the imaginary branch departs
the axis of I m(L S) = 0 in a vertical manner, so that the two conjugate solution
form a round edge, exhibiting a typical characteristics of the saddle node bifurcation.
However, if the complex eigensolution pair come from the origin and Re(L S) stays
below the essential spectrum, the edge is sharply pointed, lacking the nature of saddle
node bifurcation.

We now examine the spectral characteristics along the trajectory ‘3’, where the
Lewis number L is fixed at 1.2 whileΔ′ decreases from −0.1 to a value small enough
to exhibit a distinct spectral characteristics. In Fig. 5, four different cases are pre-
sented for Δ′ = −0.1, −0.15, −0.2 and −0.225. For Δ′ = −0.1 and −0.15, the
complex branches start right out from the origin and Re(L S) remains below the upper
limit of the essential spectrum. As discussed in the previous paragraph, the curves for
I m(L S)(K 2), shown in the lower plot, are pointed at the point departing from the
axis of I m(L S) = 0. The departure angle for I m(L S)(K 2) is seen to shrink with
decreasing Δ′. Further decreasing Δ′, the discrete spectrum for Δ′ = −0.2 begins to
exhibit a distinct characteristics in that the discrete complex spectrum exists only for
sufficiently large wave numbers, say K 2 > 0.00503. Below the critical wave num-
ber, the discrete spectrum crosses the plane of the essential spectrum, consisting of
I m(L S) = 0 and max{1, L}S + K 2 < 0, and merges into the continuous essential
spectrum. Consequently, there exists a wave number gap, in which the discrete spec-
trum ceases to exist. The gap can be clearly observed from the curve 3 in Fig. 5. The
transition to this gap behavior can be related to the edge bifurcation [15]. IfΔ′ further
decreases to −0.225, the qualitative nature essentially remains the same with the case
of Δ′ = −0.2, but the gap widens as seen from the curve 4 of Fig. 5. The numerical
calculations were carried out up to Δ′ = −0.6 along the trajectory ‘3’ in Fig. 1, but
the results are shown only up to Δ′ = −0.225 because the gap region is too big to
show in Fig. 5.
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Fig. 5 Real and imaginary parts of the dispersion relation L S(K ) for L = 1.2 and various values of Δ′

Finally, we examine the spectral characteristics along the parametric trajectory ‘4’,
where Δ′ is fixed at Δ′ = −0.4 and the Lewis number increases from 1.2 to 2.0.
Since the range of S and K 2 to properly show the spectral characteristics is widely
spaced, we will show only a few numerical results that can be clearly plotted in Fig. 6.
In order to examine the transition sequence from the gap spectrum to oscillatory
behavior, including traveling and uniform oscillatory instabilities, the Lewis number
is gradually increased. The curves 1 and 2, corresponding to L = 1.3 and L = 1.4,
are seen to possess the gaps, in which the discrete spectra do not exists. However,
the spectra for L = 1.3 and L = 1.4 reveal an important distinction that Re(L S) for
L = 1.4 is no longer monotonic, exhibiting a maximum of Re(L S) near K 2 = 0.0075,
marked by a circle. The emergence of this maximum Re(L S) is particularly important
because the fundamental structure for traveling instability lies in this nonmonotonic
behavior of Re(L S), which is in turn associated with the origin of the Bogdanov–
Takens bifurcation.
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*

Fig. 6 Real and imaginary parts of the dispersion relations L S(K 2) for Δ′ = −0.4 and various values
of L

For L = 1.5 and L = 1.7, each shown by the curves 3 and 4, the gaps are no
longer found and I m(L S) �= 0 at K = 0 as seen from the lower plot, indicating
that the discrete spectra do not cross the plane of the essential spectrum. Moreover,
there remain the maximum of Re(L S) along the curves 3 and 4. However, the loci of
maximum Re(L S) get closer to the axis of K = 0. For L = 1.9 shown by the curve
5, the spectrum still remains complex, but moves above the upper limit of essential
spectrum. Moreover, the real part of the growth rate emerges above Re(L S) = 0 with
the maximum Re(L S) occurring at a finite wave number, exhibiting a typical traveling
instability. Therefore, the edge bifurcation is reversed while moving the Lewis number
L from 1.7 to 1.9. Further increasing the Lewis number to L = 2.0, the spectrum with
the saddle node bifurcation, already discussed for the curve 3 in Fig. 4, appears again.
It thus is shown that moving the instability control parameters L or Δ′ deep into the
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gap spectrum

Fig. 7 The diagram mapping the regions with different spectral characteristics

unstable region by increasing either of these parameters causes the instability mode
to return to the uniform oscillatory instability.

The overall diagram mapping the regions corresponding to different spectral char-
acteristics is shown in Fig. 7. The main difference of Fig. 7 from Fig. 1 is that Fig. 7
shows extra regions with the gap spectrum. In addition, the loci for the edge bifurca-
tion, through which the gap spectrum appears or disappears, are marked by the dotted
lines in Fig. 7. In this analysis, our attention is focused on the stable region in the
vicinity of the Bogdanov–Takens bifurcation, through which the transition from the
saddle node bifurcation, associated with uniform oscillatory instability, to the Hopf
bifurcation, associated with traveling instability, occurs. The diagram in Fig. 7 shows
that there are three stable regions with different spectral characteristics. The first one
corresponds to that in Fig. 4, exhibiting complex dispersion relation with a monotoni-
cally decaying real part. Upon crossing the instability boundary, the dispersion relation
will be transformed into the one corresponding to uniform oscillatory instability. The
second region, that is located left hand side to the first region by the edge-bifurcation
boundary, is found to possess the gap spectrum. The gap spectrum can be character-
ized by the intersection of discrete complex spectrum with the essential spectrum, so
that the discrete complex spectrum ceases to exist for a gap with small wave numbers.
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More importantly, as approaching to the second edge-bifurcation boundary with the
third region, the gap spectrum begins to show its local maximum of Re(S), as a prepa-
ration to transform into traveling instability. Upon entering the third region by crossing
the second edge-bifurcation boundary, the gap in discrete complex dispersion relation
closes. The local maximum of Re(S) persists, but still remains to be negative, mean-
ing stable until crossing the Hopf bifurcation boundary, marked by the thick dashed
line. When the Hopf bifurcation boundary is crossed, traveling instability emerges as
shown by the curve 5 in Fig. 6. Further increasing the instability parameters, i.e L or
Δ′, the instability mode returns to the uniform-oscillatory mode.

4 Concluding remarks

In the previous papers by the authors, the fast-time instability occurring in the Liñán’s
diffusion-flame regime was systematically investigated and the regions, exhibiting dif-
ferent instability characteristics, ranging from cellular instability and uniform oscilla-
tory instability to traveling instability, are mapped in the instability control parameter
space of L and Δ′. The instability map reveals that there exist two bifurcation con-
ditions with codimension 2, each marking the transition from cellular instability to
uniform oscillatory instability and the transition from uniform oscillatory instability
to traveling instability. In this study, our interest is focused on the investigation for
the origin of these bifurcations of codimension 2 by rather examining the underlin-
ing variations of spectral characteristics in the stable regions along the trajectories
delineated in Fig. 1.

In this analysis, we found that the role of essential spectrum is vital to understand
the origins of the both transitions mentioned above. The essential spectrum is a real and
continuous spectrum of eigensolutions, perhaps described by max{1, L}S + K 2 < 0.
Since the essential spectrum is stable, it has not attracted much attention. However,
this analysis showed that interaction of the discrete spectrum with essential spectrum
is responsible for transformation of the spectral characteristics.

For Lewis number less than unity, instability can occur in a cellular manner by
increasing the parameter Δ′. When the Lewis number L is moved above unity from
below, the discrete real spectrum disappears by submerging below the essential spec-
trum, and a discrete complex spectrum emerges instead. By further increasing the
Lewis number L orΔ′ causes the saddle node bifurcation, leading to uniform oscilla-
tory instability. Therefore, the transition from cellular instability to uniform oscillatory
instability is completed, while the transition condition is marked by a bifurcation of
codimension 2 at L = 1 and Δ′ = 0.

The transition from uniform oscillatory instability to traveling instability, perhaps
formally known as the Bogdanov–Takens bifurcation, involves a phenomenon called
gap spectrum. For Lewis number slightly greater than unity, decreasing the parameter
Δ′ from the left hand side of the saddle node bifurcation boundary cause the dis-
crete complex spectrum intersects the plane corresponding to the essential spectrum,
so that the discrete complex spectrum disappears in a gap of small wave numbers.
Such a transition to gap spectrum is perhaps known as the edge bifurcation. The dis-
crete complex gap spectrum goes through a second transformation by moving slightly
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toward the Hopf bifurcation boundary to have a local maximum of Re(S) (though
remaining negative) as preparation to traveling instability. Further moving toward the
Hopf bifurcation boundary, the gap in the discrete complex spectrum disappears upon
crossing the second edge-bifurcation boundary. Then, further increase of L or Δ′ can
cause Hopf bifurcation leading to traveling instability.

This study has been devoted the investigation of stability spectral characteristics
which are found to be essential to understand the origin of different instability modes.
It would quite interesting to see if the same type of bifurcations occur in different
reactive–diffusive systems, including premixed-flame system and multi-step reaction
system.
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